Journal of Approximation Theory 92, 82-100 (1998)
Article No. AT963107

Interpolation and Approximation from Convex Sets
Bernd Mulansky

Institute of Numerical Mathematics, Technical University of Dresden,
D-01062 Dresden, Germany
E-mail: mulansky@math.tu-dresden.de

and

Marian Neamtu

Department of Mathematics, Vanderbilt University,
Stevenson Center SC 1326, Nashville, Tennessee 37240, U.S.A.
E-mail: neamtu@math.vanderbilt.edu

Communicated by R. Schaback

Received January 25, 1996; accepted in revised form December 3, 1996

Let X be a topological vector space, Y=R", ne N, 4 be a continuous linear map
from X to Y, C= X, B be a convex set dense in C, and de Y be a data point.
We derive conditions which guarantee that the set BN A~'(d) is nonempty and
dense in CnA~'(d). Some applications to shape preserving interpolation and
approximation are described.  © 1998 Academic Press

1. INTRODUCTION

A typical framework suitable for studying shape preserving interpolation
and approximation can be described as follows. Let X be a Banach space
and let 4 be a linear map from X to Y=R", neN. If d is a vector in Y,
called a data point, then the unconstrained interpolation problem associated
with the spaces X, Y and the operator A can be formulated as:

Find x € X such that Ax=d. (1)

Usually, more than one solution exists, in which case one seeks a “best”
solution based on predetermined criteria. For example, if | .| is a (semi)
norm on X, then an element x, € X is sought such that

o] = min ||x]]. (2)
xeX
Ax=d
82

0021-9045/98 $25.00

Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.



CONVEX SETS 83

A popular example of this unconstrained variational problem represent the
so-called thin plate splines introduced by Duchon in 1976 [11].

Unconstrained interpolation does not always provide satisfactory results.
For instance, in the case of this plate splines, if the data values d are
positive (that is, if each of the components of d is positive), it is natural to
require that the interpolant be nonnegative. However, it is known that
general solutions to (2) do not satisfy this requirement [32]. Therefore,
additional shape constraints are imposed. This means that if C is a subset
of X, we seek a solution to the constrained interpolation problem

Find x e C such that Ax=d. (3)

Frequently, the set C is a closed convex cone, e.g., a cone of nonnegative,
monotone, or convex functions, or the intersection of a number of shifts of
such cones. In case there are many solutions to (3), a possibility is to seek
a solution of the constrained variational problem

ool = min[|x. (4)
xeC

Ax=d

In applications, a solution to (3) or (4) is often considered under the addi-
tional condition that it belongs to a subspace S of X.

Clearly, a necessary condition for the existence of a solution to (4) is that
the data point d be admissible [5], i.e.,

Cnd '(d)# T, (5)
where
A '(d):={xeX:Ax=d}.

In order to formulate the objectives of this paper, we make the following
assumptions. The symbol X will denote a real topological vector space. In
the applications we have in mind, X is usually an infinite dimensional func-
tion space, e.g., a space of continuous functions, or a Sobolev space. 4 will
stand for a continuous lincar map from X to a finite dimensional space
Y=R", neN (equipped with the usual topology). Let de Y. Since {d} is
closed in Y, the set 41(d) is a closed affine subspace of X. C will denote
a nonvoid set in X defining the desired shape properties. Finally,

A[C]:={Ax:xeC}cY

will designate the set of all admissible data points, called the data set.
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With this notation, a shape preserving interpolation operator I: A[C] — C
can be viewed as a selection for the set-valued mapping A[C]—2¢:
d— CnA~'(d). This selection is usually based on a minimization of a
suitable (quadratic) functional, such as (4). We point out that this problem
is closely related to the so-called variational inequalities [ 15, 21]. Special
cases have been analyzed, e.g., in [5, 6, 9, 23, 33], where, among other
things, conditions have been derived guaranteeing the existence of a
solution.

A typical assumption considered in the literature on shape preserving
interpolation is the admissibility of the data. The question of the charac-
terization of the admissibility, which we address here, seems to have attracted
less attention. In particular, our aim in this paper is to study the problem
of the existence of shape preserving interpolants in the case where the set
C is replaced by a convex subset B of C. In this case, the shape preserving
interpolation problem is to find an element x from X such that

xeBn A~ \(d). (6)

Usually, the set B is given as the intersection of C with a linear subspace
S of X, e.g., a space of (piecewise) polynomials, a space of functions of
certain smoothness, or a finite dimensional space as a result of discretization
of the problem (4). Alternatively, B could represent a set of elements which
are strictly contained in C, in some sense. For example, B could be the set
of strictly convex or strongly convex functions (see Section 4.2). If d is an
admissible data point, i.e., if d admits interpolation from C, it does not
necessarily admit interpolation from B.

In this general setting, the problem has been studied by, among others,
Wong [33]. He has utilized a condition according to which an element
f of C admits both interpolation and approximation from Cn .S, where
S is a dense subspace of X, if d=Af is a so-called Slater point, ie.,
de A[int(C)]. However, this condition is fairly restrictive since it requires
a nonempty (topological) interior of C.

The above facts lead to the following question: Under what conditions
is Bn A~ '(d) nonempty and dense in Cn A4~ '(d)? In the subsequent sec-
tions we derive conditions which are less restrictive then those obtained by
Wong. In particular, we will dispose of the restriction that X is a Banach
space and that C has a nonempty interior. We also consider the special
case that S is finite dimensional. The results are then illustrated in a num-
ber of examples of shape preserving interpolation and approximation for
which the considerations of Wong do not apply. In fact, many results on
shape preserving interpolation and approximation obtained previously by
other means follow as simple consequences from the presented unifying
approach. A first version of this paper appeared in [25].
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2. INTERPOLATION AND SIMULTANEOUS APPROXIMATION
FROM DENSE SETS

In this section we derive sufficient conditions which guarantee that
elements f in C can be interpolated and simultaneously approximated by
elements from the set B, provided B is convex and dense in C.

Since we will be interested in interpolating data from A[ C], assuming
surjectivity of 4, i.e., setting Y= A[ X' ], will not be a restriction for our
purposes. For a set M < Y, the symbol ri(M ) will denote its relative interior,
i.e., the interior of M in aff(M), the affine hull of M. In the following we
say that B is dense in C if B< C =cl(B), where cl(B) is the closure of B.

THEOREM 1. Let B be a convex and dense subset of C. Then ri(A[ C]) =
ri(A[ B]) # &.

Proof. Let M be a set in a topological space and let F be a continuous
map from this space to another topological space. Then cl(F[M])=
cl(F[cl(M)]). To prove the nontrivial inclusion cl(F[cl(M)]) ccl(F[ M]),
first note that M < F~'[cl(F[M])] and hence cl(M )< F~'[c(F[M])],
by continuity of F. Thus, F[cl(M)] ccl(F[ M]) and therefore the claimed
inclusion holds. Applying this result to the map A and the sets B, C we
obtain cl(A[B])=cl(A[cl(B)]) and cl(A[C])=cl(4A[cl(C)]). By our
assumption cl(B)=cl(C), which gives cl(A[ B]) =cl(A[ C]). This implies
ri(A[ B]) cri(A[ C]) =ri(cl(A[ B]) (see [30, p. 88]). Furthermore, it is
well known that ri(cl(L)) =ri(L) whenever L is a convex subset of a finite
dimensional space [30, p. 90]. Hence, setting L = A[ B] and noting that
A[ B] is convex, we obtain ri(A[ B]) =ri(A[ C]).

The second part of the assertion follows from the fact that every non-
empty convex set in a finite dimensional space has a nonempty relative
interior [30, p. 89]. 1

The above theorem can be improved in the sense that elements of C
corresponding to interior data points can be simultaneously approximated
by elements from B. We first need the following

LEMMA 2. Let ¢ be a continuous linear functional on X, and let B be a
dense convex subset of C<X. Suppose reri(p[ C]). Then B~ \(r) is
dense in Co~(r).

Proof. If r1i(p[C])={r}, the lemma holds trivially, since then
e[ Cl={r} and thus C< H:=¢ '(r). Otherwise, if ¢[C]# {r}, then
ri(e[ C])=int(e[ C]). It will be sufficient to prove that for every neigh-
borhood U of 0e X and every xe Cn H we have (x+ U)nBn H# . It
is well known that there exists a balanced absorbing neighborhood V
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such that V+VcU Let x*e(x+V)nc(C)nH™*, where H* :=
@ '[(r, )], which is an open set by the continuity of ¢. Such an x*
clearly exists since reint(@[ C]) and V is absorbing, and since cl(C)=
cl(B) is convex. Similarly, there exists an x ~ € (x + V) ncl(C) n H~, where
H~ :=¢ !'[(—o0, r)]. Note that the sets (x+ V)nH* and (x +V)nH~
are open neighborhoods of x*ecl(C) and x~ ecl(C), respectively.
Thus by the density of B in C, there exist two elements ™ and b~
such that b e(x+V)nBNnH™" and b~ €(x+ V)nBn H . Moreover,
there is an element b of the form b=th~ +(1—¢t)b " =x+t(b~ —x)+
(1—2)(b* —x), te(0, 1), such that

be(x+V+V)nBnHc(x+U)nBn H.

This follows from ¢(b~) <r<¢(b™*), from the convexity of B, and the fact
that 7 is balanced. Hence, we conclude that (x+ U) n B H # ¢, which
finishes the proof. ||

THEOREM 3. Let B be a dense convex subset of C and let deri(A[ C]).
Then BN A='(d) is dense in Cn A~ (d).

Proof. We proceed by induction on n, the dimension of Y. The proof
for n=1 follows from Lemma 2 by setting r =d. As for the induction step,
let £ be a linear map and ¢ be a linear functional defined for x € X by
Ex=(ry,..r,) and ¢(x)=r,, ,, respectively, whenever Ax=(r, .., 7,,
r,.1)€R"H 1 Clearly, since A4 is continuous, so are E and ¢. Let d=(d,, ...,
d,, d,,)eR""! such that deri(4A[ C]). Hence, also (d,, ..., d,) eri(E[ C])
and d, , eri(p[CnE!(d,, .., d,)]). To see this, it is well known that if
L is a nonempty convex set in Y, and F is an affine map on Y, then
ri(F[L])=F[ri(L)] [19, p. 107]. This readily implies the first assertion
(dy,..,d,)eri(E[ C]), since E[C] is an image of A[ C] under a linear
map. To prove the latter, let ¢ be the functional defined by ¢(r, ...,
Frs Twit) i=T,.1, SO that @=¢oA. Thus, p[CNE Y (d,,..d,)]=
JLALCAA [{(d). . d,)} xRIT] =4[ A[CT A ({(d}. .. d,)} x R)]. The
assertion d,,eri(p[CnE '(d,, .. d,)]) is now an immediate conse-
quence of deri(A[ C]) and deri({(d,, .., d,)} x R), and therefore also de
ri(A[C] n ({(d,, .., d,)} x R)).

By the induction hypothesis, BN E~!(d,,..,d,) is dense in Cn
E~'(d,, .., d,). Applying Lemma 2 to the sets BnE~!(d,, .., d,) and Cn
E~'(d,,..d,), with r=d, |, shows that BN E '(d,, ...,d,) "¢ (d,, )
is dense in CnE " '(d,, .., d,) n @ '(d,, ;). This proves the assertion of the
theorem, since obviously E~'(d,, ...d,)no " (d,,,)=A"(d). |

Weaker variants of Theorems 1 and 3 have been obtained by Wong
[33]. He stated the results for the so-called Slater points, i.e., for points d
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for which de A[int(C)] or, equivalently, int(C) n 4~ '(d)# & [5]. In the
following we derive his results from Theorem 3. We shall first prove

LemMa 4. Let S be a dense subspace of X and let C be a convex set such
that int(C) # . Then Cn S is dense in C.

Proof. Let xeint(C). Then for all open neighborhoods U(x) of x,
int(C) n U(x) is nonempty and open. Hence, by the density of S, int(C) n
Ux)nS+# . This means int(C)n S is dense in int(C) and thus, by
convexity of C, and by the assumption int(C) # J, it is also dense in C
[20, p. 59]. 1

COROLLARY 5 (Wong [33]). Let S be a dense linear subspace of a
Banach space X, C = X be a convex set, and let int(C)n A~ (d) # . Then
CnSnAYd) is dense in Cn A~ (d).

Proof. Since X is a Banach space, by the open mapping theorem each
Slater point de A[int(C)] is also an interior data point, ie., de
int(A[ C]) =ri(A[C]) (cf. [5]), and thus Theorem 3 applies. ||

We conclude the section with some remarks.

Remark 1. Theorem 3 can we viewed as a generalization of the Singer—
Yamabe Theorem [20], which is obtained if we set C= X and assume that
B is a dense convex subset of X. Our proof of the theorem and the preceding
lemma follows closely the proof of the Singer—Yamabe Theorem in [ 20,
p. 49]. A different generalization has been given by Deutsch and Morris
[10] who considered a norm-preserving simultaneous interpolation and
approximation.

Remark 2. The assertion of Theorem 3 serves as a prerequisite in con-
vergence considerations for finite dimensional approximations in shape
preserving interpolation problems. In that context it is necessary that dis-
cretizations of K=Cn A~ '(d) become dense in K; cf. [ 15, 33].

Remark 3. The requirement int(C)# ¢ used by Wong is often too
strong, and in many practical situations is not met. In fact, the examples
given in [33] only refer to constraints on function values and not on
derivatives. Hence, there the cone of positive functions which has a non-
empty interior has been considered. The results of Wong do not apply in
cases where C are cones of continuous monotone and/or convex functions,
since these have empty interiors in the considered function spaces.
However, even if the interior of C is empty, the set C might still admit
interpolation from C N S (examples of such cases will be discussed later in
Section 4). In Theorem 1, a weaker condition has been used, namely that
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d should be an interior data point. This turns out to be a natural require-
ment in other situations. For instance, it has been pointed out in [5] that
the condition on the data imposed by Micchelli and Utreras [23] in con-
nection with the problem of existence and uniqueness of solutions to
certain constrained variational problems is equivalent to d being an interior
data point.

3. SHAPE PRESERVING INTERPOLATION IN
FINITE DIMENSIONAL SUBSPACES

In this section we consider the case where the set B is the intersection of
a nonempty closed convex set C < X with a finite-dimensional space S < X.
Note that B is a closed convex set. Let rec(B) be the recession cone of B
in S, that is,

rec(B):={xeS:x+ BcB},

which is a closed convex cone [ 20, p. 34]. Our main result is based on the
following

THEOREM 6. Let S be finite dimensional, A: S — Y be linear, and B< S
be nonempty, closed, and convex. If rec(B) n A~'(0) is a linear space, then
A[ B] is closed.

Proof. 1If L and M are closed convex sets in a finite dimensional space
such that rec(L) nrec(M) is a space, then L — M is closed [ 20, p. 104 and
Exercise 2.60]. Setting L =B and M =A4"'(0) it follows by the assump-
tions of the theorem that B+ A4 ~'(0) is closed. However, it is known that
if 4 is surjective, then B+ A4~'(0) is closed if and only if A[ B] is [20,
p. 142]. On the other hand, if A4 is not surjective we can make it surjective
by considering A[ S] instead of Y. |I

Remark 4. 1f B is a cone, then rec(B)= B, and hence by Theorem 6,
A[B] is closed provided BnA~'0) is a space. In particular, A[ B] is
closed if BN A7'(0)={0} [20, p. 105]. The assumption that Bn 4 ~'(0)
is a space cannot be completely removed. Even in the case where B is a
closed convex cone it is possible to construct examples for which the data
set A[ B] is not closed. For instance, 4 can be the canonical projection
operator from R*® onto R? and B can be the closed conical hull of the set
{(x,1,2)eR*: 0<x<1,z=1/(1 —x)}. Clearly, A[ B] is not closed in R>.
Note that in this case rec(B) n4~'(0)={(0,0, z), z>0}, which is not a
space. More sophisticated examples are given in [5] and [20, p. 142]. If B
is a polyhedron, (i.e., the intersection of finitely many closed halfspaces),
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then A[ B] is closed even if B~ A~'(0) is not a space. This follows from
the fact that in a finite dimensional space, every polyhedron has a finite
basis [ 30, p. 46]. In fact, A[ B] is closed for a polyhedron in any Banach
space S, not necessarily finite dimensional [ 20, p. 180].

COROLLARY 7. Let S be finite dimensional, A: S — Y be linear, and C be
a nonempty, closed, and convex set such that rec(B) n A~ '(0) is a linear space,
where B=Cn S. If Al CI\A[B] # &, then also ri( A[ C])\A[ B] # &.

Proof. By Theorem 6, A[B] is closed. Moreover, cl(A[C])=
cl(ri(A[ C1)) [19, p. 105]. Suppose 1i(A[ C])\A[ B] = &. Thus ri(A[C]) =
A[ B]. But then also A[C]ccl(A[C])=cl(ri(A[ C])) = A[ B], which is
impossible, since ALCI\A[B]1# . 1

Remark 5. Corollary 7 can be reformulated as follows. Whenever there
exists an admissible data point which cannot be interpolated by elements
from B, then necessarily there also exists an interior data point which can-
not be interpolated from this set. This fact is illustrated in Theorems 10 and
15 below. However, the assertions of Theorem 6 and Corollary 7 do not
generally hold if S is a nonlinear finite dimensional manifold in X. This
explains why rational splines, splines with variable knots, exponential
splines, and various other types of nonlinear splines are usually better suited
for shape preserving interpolation. We refer the reader to [16, 29] for an
overview and references on shape preserving methods based on such
splines. Another example is the algebraic curves and surfaces which can
interpolate and approximate convex data [17, 22]. Similarly, this is also
the case with the (nonlinear) space of parametric geometrically smooth
(G') piecewise quadratic planar curves, which can be used for convexity
preserving interpolation.

Next, we prove that under an additional assumption the sets
BnA~Y(d), de Y, are compact. This is often important in connection with
the existence of shape preserving interpolants defined as minimizers of
certain functionals.

THEOREM 8. Under the assumptions of Theorem 6, let de Y be such that
BnA Nd)# . Then BnA~(d) is compact if and only if rec(B)n
A=1(0)={0}.

Proof. Let L and M be closed convex sets in a finite dimensional space
such that LM # . Then rec(Ln M )=rec(L) nrec(M) [19, p. 110].
Also, L is compact if and only if rec(L)={0} [19, p. 109]. The asser-
tion now follows from rec(Bn A4~ '(d)) =rec(B) nrec(A~'(d)) =rec(B) N
A10). 1
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Remark 6. Theorem 8 generalizes an observation made in [ 13] that for
finite dimensional spaces the set of admissible slopes for monotonicity is
compact.

4. EXAMPLES

In the following a number of examples will be given illustrating the ideas
of the previous sections. The presented examples are nontrivial in the sense
that the set C has empty interior. We first establish some notation. We
shall assume that Q is a subset of R*, se N. CX(Q), ke Z , , will denote the
space of all functions continuously differentiable in Q up to order k.
II(Q) :={p(X) =X <k PaX"; Py€R, aeZ’, xeQ} and II(Q):=
Ukez, I1;(£2) denote the space of s-variate polynomials of total degree <k
and the space of all s-variate polynomials in Q, respectively. Here we
employ the standard multi-index notation, ie., x*:=x{ ..-x%, |af:=
o+ -+ Fay, for x=(x, .., x,)eR" and a = (ay, .., x,) € Z°, . E will stand
for the space of analytic functions in R* ie., functions which can be
extended to the complex space C* as entire. Finally, if f is a differentiable
s-variate real-valued function of variables x=(xi, .., x,), then f. will
denote the partial derivative of f with respect to x;.

4.1. Interpolation and Approximation by Monotone Polynomials

A continuous function f'e C(Q), with Q a compact subset of R, is non-
decreasing (increasing) if f(x) < f(y) (f(x)<f(y)) whenever y —xeR*, \
{0}, x, ye Q. The cone of all nondecreasing continuous functions in Q is
denoted by mon(C(R)). Let a<x'< --- <x"<bh, neN, be real numbers.
In the following we assume

X=C[a,b], a<b,

C=mon(C[a, b]).,
B=mon(IT[a,b])=Cn M[a,b],

Y=R",

A XY, Afi=(f(x"), .. f(x")eR", feX.

The cone of all nondecreasing polynomials, mon(/I[a, b]), is dense in
mon(C[a, b]). This follows from the well-known fact that Bernstein polyno-
mials of a nondecreasing function are nondecreasing. Note that the interior
of the data cone A[ C] is nonempty since int(A[C])={(f\, ... f,) €R"
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fi<fiz1» i=1,.,n—1}. Thus, a direct consequence of Theorems 1 and 3
is the following

THEOREM 9. Let f be an increasing continuous function on [a, b]. Then
there exists a polynomial p which is nondecreasing on [a, b] and such that
p(x') = f(x"), i=1, .., n. Moreover, the set of all such interpolating non-
decreasing polynomials contains a sequence converging uniformly to f.

We point out that if the interpolation nodes are fixed, the degree k of the
interpolating polynomial cannot be specified in advance. This is because of
the following.

THEOREM 10. Let n=3, ke N, and S=1I,[a, b]. Then there exists an
increasing sequence of data values fy < --- < f, such that there is no poly-
nomial pe CnS=mon(Il,[a, b]) such that p(x")= f,, i=1, .., n.

Proof. Choose fi, .., f, such that fi=f,</f;<--- <f,. Obviously,
(fis e [)EA[C] and (f, ..., f,,) ¢ A[ C S], since clearly a nonconstant
nondecreasing polynomial cannot assume equal values at two different
points. Moreover, rec(Cn S) n A~ '(0) = {0}. Thus, Corollary 7 applies. ||

Remark 7. The results of Theorems 9 and 10 are not new. They have
been presented here for the sake of illustrating the ideas of the previous two
sections. For more information and details about monotonicity preserving
polynomial interpolation we refer the reader to [ 28] and references therein.

Remark 8. The above two theorems also hold true in the multivariate
case. The proof of Theorem 9 for the multivariate case follows along the
same lines. The essential property which must be assured is the denseness
of the cone of all nondecreasing polynomials on Q in mon(C(£2)). This can
be shown as follows. Let [a, b]* be an s-dimensional cube containing Q. It
is known [26] that every nondecreasing continuous function in £ can be
extended as a continuous nondecreasing function on [ a, b]°. Thus, it is suf-
ficient to show that mon(/1([«, b]*)) is dense in mon(C[ «, b]*)). However,
this again follows from the fact that multivariate (tensor product) Bernstein
polynomials are monotonicity preserving.

To extend Theorems 9 and 10, we also need to prove the following: Let
D:={x",.,x"} =Q be a set of distinct data sites. The data f, .., f,
corresponding to the data sites are nondecreasing, i.e., whenever x/ — x’e R*,
then f; < f}, i, j=1, ..., n, if and only if there exists a function /'€ mon(((£2))
interpolating the data. We only sketch the proof of this observation.
Obviously, if f'e mon(C(£)) then the data f(x'), .., f(x") are nondecreasing
by definition. The proof in the opposite direction is based on the following
fact: Let f1, ..., f, be nondecreasing data and let x"* ' e R®. Then it is possible
to find f, ., €R such that all the n+ 1 data are nondecreasing. We can
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take, eg., f,<f,.1</f,, where f:=maxD, D,:={f;|x'—x""'eR",
i=1,.,n}, and f,:=minD,, D,:={f;|x"*'—x"eR’, i=1,.,n}. If
D, or D, is empty, we define f,:=min{f;,, i=1, .., n} and f,:=
max{ f;, i=1, .., n}, respectively. Next, consider a cube [a, b]* containing
the set Q and the mesh of points M :={a, x1, .., x|, b} x --- x{a, x!, ..,
x”,b}. By definition, D= M. We denote the points in M\D as x"*', ..,
x"+2" By the above observation we can find real values f, , |, .., f(,4 2
such that the data f, ..., f(,,,, are nondecreasing. We define the function
f such that in each s-dimensional sub-interval of the cube [a, b]° corre-
sponding to the partition of [ a, b]° determined by M, fis the s-linear blend
of all the data associated with the corner points of the sub-interval. This
finishes the proof, since clearly f is continuous and also nondecreasing, on
account of the fact that multilinear blends preserve monotonicity.

We conclude that in the multivariate case, in addition to the requirement
that n>3 in Theorem 10, it should also be assumed that there exist at least
two data sites x’, x/ in D such that x/—x'eR’, .

4.2. Interpolation and Approximation by Convex Polynomials

In the following we consider interpolation and approximation of con-
tinuous functions by convex polynomials. We shall assume that €2 is a convex
compact subset of R’, se N. A continuous function f defined on Q is convex
if for arbitrary distinct points y’, i =0, .., s, in Q it holds that

7( T 20)< 3 ason ™
i=0 i=0
whenever 2= (g, ., 4,) €A :={(Agy w0 A3): 4;>0, X3_o A;=1,i=0, ..., s}.
Convex functions are called strictly convex if the inequality in (7) is strict.
A C? function f'is called strongly convex in Q if u”H(x)u >0, for every
xeQ and every ue R°\{0}, where H(x) is the Hessian matrix of f at x.
Finally, conv(C*(R)), conv(I1,(£)), conv([1(L2)), and conv(E(R)) denote
the convex cones of convex functions on Q2 belonging to the respective
function spaces CX(Q), I1,, II, and E.

In order to be consistent with the notation employed in Section 2, we let

X=0CQ),

C=conv(C(R)),

B=conv(II(Q)) = C II(R),

Y=R", neN,

A: XY, Af:=(f(x"),.., f(x"))eR", feX.
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A description of the data cone A[ C] of convex functions has been given,
e.g., in [7, 24]. According to this description, the data {(x’, f;)} are convex
if and only if there exists a convex piecewise linear interpolant to these
data, ie., a piecewise linear convex function f such that f(x’) = f;. This, in
turn, is equivalent to the existence of a triangulation (or a simplicial
decomposition), called a convex triangulation, of the data sites {x'} for
which the piecewise linear function f based on this triangulation, inter-
polating the values f;, is convex. A necessary prerequisite to applying
Theorem 1 is the denseness of B in C. Note that in the present situation C
has empty interior, thus Lemma 4 cannot be used. In the univariate case
the denseness follows immediately from the well-known fact that Bernstein
polynomials of a continuous convex function are convex. The proof in the
multivariate case is more involved, since there the Bernstein polynomials
are not convexity preserving. For the sake of simplicity, we next restrict
ourselves to the bivariate case.

THEOREM 11. Let s=2. A function f € conv(C(Q)) can be approximated
arbitrarily well by convex polynomials in Q in the sense that f is the C(Q)
limit of a sequence of polynomials from conv(II(£2)).

Proof. The theorem is a direct consequence of Lemmas 12 and 13
below. |

LEMMA 12. Let s=2 and let f e conv(C(Q)). Then f is the C(2) limit
of a sequence of analytic functions from conv(E(£2)).

Proof. Let D={x",..,x"} be a set of distinct data sites in €. The proof
is based on the following fact. The function f can be approximated
arbitrarily well by a convex piecewise linear interpolant based on the data
sites D, if n is sufficiently large and if the data sites become dense in Q. This
follows from the fact that a piecewise linear convex interpolant is the best
approximant (in the usual norm of C(£2)) from all piecewise linear inter-
polants for a fixed set D [24]. Next, for a given set D and a convex tri-
angulation of D, corresponding to the data values f|,, let

fp(x) := max I(x), xeR?,
/EE,_D

where L, , denotes the set of linear functions / with the property that
whenever x”°, x", x” are three data sites in D, forming a triangle from the
considered convex triangulation, then the linear function / interpolating f at
these data sites belongs to L, ,,. Observe that f}, is convex on R? it inter-
polates f at D, and it is bounded from above by the function

Cilx|+C  xeR? (8)
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for some C,, C,eR. Let us consider the following family of approxima-
tions to f,, (cf. [31, p. 153]):

S ) 1= jR, G x =) foly)dy,  xER’,

= m/f —m? H\’H- me N

On account of (8) it is possible to show that the functions f), ,,, me N, are
analytic in R? and converge uniformly to f,, on every compact set i.e., also
on Q.

Therefore, it is enough to prove that f, ,, is convex in Q. Let »°, y', y*
and 4y, 4,, 4, be given as in (7). We then have

Z iSo.ml fDm(Zz >
:fRz G,.(y) <E,0 Aifo(y+ ) —fo <,i Ay + y5)>> dy. (9)

i=0
The expression (9) is nonnegative since f, is convex and since o, is non-
negative for all meN. Thus f), , is convex, and hence the assertion
follows. ||

LeEMMA 13.  The polynomials from conv(I1(Q)) are dense (in C*(L2)) in
conv(E(L)).

Proof. Let feconv(E(L2)). Since strongly convex functions from
conv(E(R2)) are dense in conv(E(L)), we can assume that f'is strongly con-
vex. The truncated Taylor series expansions of an analytic function and all
its derivatives are known to converge to this function and its derivatives
uniformly on every compact set. Therefore, the Hessian determinant and all
its minors, viewed as analytic functions of x, of the truncated Taylor series
of f also converge uniformly on any compact set to the Hessian determi-
nant and its minors of f. However, by the assumption of strong convexity
of f, the Hessian matrix is positive definite in 2, i.e., the Hessian determi-
nant of f and its principal minors are positive (analytic) functions in Q.
This means, however, that the sequence of the Taylor polynomials of f
contains a subsequence of convex polynomials (in fact, strongly convex)
in Q. 1|

THEOREM 14. Let s=1 or 2 and let feconv(C(Q)) be strictly convex
and let D={x"}"_,, neN be a finite set of distinct data sites in Q. Then
there exists a polynomial peconv(II(2)) which interpolates [ at D.
Moreover, the set of all such interpolating convex polynomials contains a
sequence converging uniformly to f.
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Proof. Since f'is strictly convex, the data vector d= f|, is an interior
data point. Therefore, by the density of B in C, an application of Theo-
rems 1 and 3 finishes the proof. ||

Just as in the case of monotone polynomials, for convex polynomials it
is not possible to specify the degree of the polynomials in advance. In fact,
to prove this we do not need to restrict to polynomials, since in the case
of convexity preservation a more general assertion holds (cf. Theorem 10).

THEOREM 15. Let n>4 and let D ={x"}"_, =« Q =R be a set of distinct
data sites. Moreover, let S be a finite dimensional subspace of C'(2). Then
there exist strictly convex data {f;}"_, which do not admit convexity
preserving interpolation from S.

Proof. 1In this case we have

X=CQ),
C=conv((C(£2)),
Y=R",

A:X-Y, Af:=f|,, feX

Assume that the data sites are ordered such that x' < ... <x”. Obviously,
the function f(x):=(x—x%), :=max{0,x—x’}, xeQ, satisfies Afe
A[ CI\A[ C~ S]. Moreover, clearly rec(CnS)nA4~'(0)={0}. By Corol-
lary 7, there exist strictly convex data, i.e., data in int(A[ C]), which are
admissible for interpolation from C and are inadmissible for interpolation
from CnS. |

Remark 9. Using a different technique, Theorem 11 has been proved in
[34]. In that paper, some negative results about convexity preserving
approximation have also been established.

Remark 10. Recently, the first (interpolation) part of Theorem 14 has
been proved by other means in [1] and independently in [2]. Here, we
have shown the existence of a convex interpolating polynomial, while in the
two mentioned papers only the existence of a C* function is guaranteed.
In [2] the result has been proved for Hermite (gradient) data that are
strictly convex (see [4] for the univariate case). By modifying the defini-
tions of 4 and Y, this generalization can easily be proved using our
approach. Finally, in [ 2] the existence of a strictly convex interpolant has
been proved. This refinement is easily deduced by replacing the set
conv(71(£2)) with the subset of all strictly convex, or even strongly convex,
polynomials. This replacement is possible since both of these subsets are
dense in conv(I1(£2)).



96 MULANSKY AND NEAMTU

Remark 11. There seems to be some ambiguity in the literature on
bivariate convex interpolation concerning the characterization of strictly
convex data. As mentioned above, it is known that the data are convex if
and only if there exists a corresponding convex triangulation. It now makes
sense to define two cones of “strictly convex data.” (1) The first possibility
is to consider the cones of data which are convex with respect to a fixed
triangulation. The union of the interiors of these cones consists of convex
data for which no adjacent faces of the corresponding convex piecewise
linear interpolant are coplanar (or no four data points are coplanar). This
has been done, e.g., in [1] and [3]. (2) An alternative is to consider the
cone A[ C], i.e., the set of data points for which there exists a convex tri-
angulation. In this case it is easily shown that the interior of this cone, con-
sidered in [2] and [24], consists of all data for which the corresponding
convex piecewise linear interpolant has a strictly supporting plane at each
data point. It is obvious that strictly convex functions give rise to strictly
convex data. Note that this is not true in the first case. We point out here
that Lemma 3.1 and its proof in [1] holds for data which are strictly
convex in the second sense.

Remark 12. From the proof of Theorem 14 it follows that strictly
convex data can be interpolated by a convex C' function (in fact, a polyno-
mial). It is not difficult to show that actually there exists a strictly convex
interpolating C' function (see Remark 10). Thus, Theorem 15 implies that
for every fixed set of at least five distinct data sites, and a finite dimensional
space S of C' functions, one can find a strictly convex C' function for
which there is no convex interpolant from S. Theorem 15 appears in [27],
and is proved by different means. There a multivariate version of the
theorem has also been given. For the sake of brevity, we have restricted
ourselves to the univariate case, although a similar proof based on
Corollary 7 can be given in the multivariate case.

4.3. Positive and Monotone C* Spline Interpolation

In [18] it is shown that it is in general impossible to interpolate strictly
positive data with nonnegative cubic C? splines (with data at the knots).
As the authors of [ 18] point out, for the data (0, 0), (1, 0), (2,0), (3, 1),
(4,0), (5,0), all C? cubic interpolants are negative at some point in [0, 5]
i.e., none of the splines preserve nonnegativity of these data. In our ter-
minology this means that the data point d=(0, 0, 0, 1, 0, 0) belongs to the
set of admissible data points for nonnegative interpolation from the set of
continuous nonnegative functions (since the data are nonnegative), but
that d does not belong to the set of admissible data points for nonnegative
interpolation from the given spline space of C? cubic splines with knots 0,
1, 2, 3, 4, 5. Note that 4 is not an interior data point. However, by
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Corollary 7, this means that there also exists an interior data point which
does not admit nonnegative interpolation with C? cubic splines. A similar
negative result can be derived for monotone quartic C? splines [ 18].

4.4. Interpolation to the Vertices of a Polyhedron

In [17], the following fact was shown by constructive means. For any
bounded convex polyhedron in R>, there is an infinite number of convex
interpolating surfaces through the edges of the polyhedron which are G?
continuous everywhere except at the vertices. Using our results one can
prove the existence of a C* surface passing through the vertices of the
polyhedron (but not necessarily through its edges). We only sketch the idea
of the proof, which is similar to the one of Theorem 14.

After an appropriate translation, a bounded convex polyhedron can be
viewed as a continuous spherical convex function, ie., a continuous
positive function f on , the unit sphere in R*, which represents a convex
star-like surface in R*. This surface is defined as the set of all points of the
form f(x) x, xe Q. Just as in the planar case, the set of spherical convex
functions is a convex cone. Thus the above problem can be reformulated
as: Let f be a spherical convex function and let D= {x/, .., x"} be a set
of discrete data sites located on @ such that the data points f(x') x,
i=1, .., n, are strictly convex, i.e., such that they are extreme points of their
convex hull. Then there exists a C* convex spherical function, interpolating
f at D. In fact, as in Section 4.2, one can show that such interpolating
functions can also approximate f. Finally, we note that some constructive
methods for smooth convexity preserving interpolation can be found in
[12, 14].

4.5. Interpolation with Constrained Length

Suppose we want to find a curve {(x, f(x)), x€[a, b]}, corresponding
to a real-valued function f from a space S<C'[a, b], interpolating one
dimensional positional data fi, .., f, at data sites a=x'< --- <x"=b,
n > 3. In addition, we require that the lengths of this curve between each
two consecutive data points be equal to some prescribed (compatible)
values /4, ..., Z,_;. In [8], it has been stated that this may not always be
possible. In particular, if S is finite dimensional, then one can find strictly
admissible data values f, ..., f,,, /1, ..., £,,_; for which such an interpolating
function f does not exist.

To sketch the proof of this statement, we employ the following notation.
Let X be the space of functions continuous on [a, b] and continuously
differentiable on each subinterval (x’, x'*!), i=1,..,n—1. Fixing ¢,>
Xt —xi=1,.,n—1, we set
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xit1

C:={feX:fv 1+f’(x)2dx</[,i=1,...,n—l},

which is a nonempty and convex set [19, p. 5]. Thus setting Af:=
(f(x", ..., f(x™), we obtain

A[Cl=1{deR": J(x" ' =XV +(d;,,—d)</pi=1,.,n—1}.

Furthermore, let S be a finite dimensional space of C' functions. Then it
is not difficult to see that rec(CnS)nA~'(0)={0}. By Theorem 6 we
conclude that A[Cn S] is closed. Note that in fact this also follows
directly from the definition of the set C. The proof now proceeds along the
same lines as the proofs of Theorems 10 and 15, using Corollary 7.
Namely, choosing the values f; in such a way that

\/(xi+l_x[)2+(f;+l_fi)2:/i’ izl)“’an_la

it is clear that the only possible interpolant from C is the piecewise linear
interpolant. Since the data f; can be chosen such that this is a non-smooth
function, it does not belong to the space S. However, by Corollary 7, one
can also find strictly admissible data for which there is no interpolant from
Cn S. Clearly, this means there is also no interpolant to these data values
satisfying

xitl

f_ 1+ f'(x)2dx=¢,, i=1,.,n—1,

which finishes the proof.

The above example is interesting in that the interpolation conditions on
the length of the curve have been conveniently included in the definition of
the set C rather than the definition of the operator 4. Otherwise, it would
be necessary to consider a nonlinear operator A, for which our theory, as
yet, does not apply. Finally, this approach does not seem to make it
possible to prove an analog of Theorems 9 and 14. For this, an extension
of the theory to a nonlinear setting is needed.
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